The University of Burdwan

Syllabus for 4- year Honours

in

Microbiology

Under Curriculum & Credit Framework for Undergraduate programme (CCFUP) as per National Educational Policy (NEP), 2020 w. e. f. 2023 - 2024 onward

			Semes									
Sr. No.	Subject Code	CodeCourse TitleLevelCourse type		Course type		chen achi	ne of ng	Cre dit	Sche	eme of	evaluati	ion
					L	Т	P/vi va		Т	P/v iva	IA	FM
1	MICR1011	Introduction to Microbiology and Biomolecules	100- 199	Major/ DS Course (Core)	3	0	1	4	40	20	15	75
2	MICR1021	Introduction & Scope of Microbiology	100- 199	Minor Course	3	0	1	4	40	20	15	75
3	MICR1031	Microbiology for Beginners		Multi/ Interdisciplinary	3	0	0	3	40	0	10*	50
4	AEC1041	Language (Eng/Hindi/Sanskrit etc) or Equivalent Course from SWAYAM/ any UGC recognized platform	Course	Enhancement [L ₁ -1 MIL]	2	0	0	2	40	0	10	50
5	MICR1051	Microbiological analysis in Health Care	Skill En (SEC)	hancement Course	3	0	0	3	40	0	10**	50
6	CVA1061	Environmental Science / Education	Common Course (n Value Added VAC)	3	0	1	4	60	20	20	100
	Total							20				400

Scheme of B. Sc. Microbiology 2023- 24 onwards Semester-I

Semester-II

Sr.	Subject	Course Title	Lev	Course type		Scheme of				Cr	Cr Scheme of evaluation			on		
No	Code		el		teaching		teaching		eaching		ng ed it					
•					L	Т	P/v	n	Т	P/vi	IA	FM				
1	MICR2011	Bacteriology	100- 199	Major/ DS Course (Core)	3	0	iva 1	4	40	20 va	15	75				
2	MICR2021	Basic Bacteriology	100- 199	Minor Course	3	0	1	4	40	20	15	75				
3	MICR2031	Microbes and Environment		Multi/ Interdisciplinary	3	0	0	3	40	0	10*	50				
4	AEC2041	Language (Eng/Hindi/Sanskrit etc) or Equivalent Course from SWAYAM		y Enhancement e (AEC) $[L_1-1]$	2	0	0	2	40	0	10	50				
5	MICR2051	Biofertilizers and Biopesticides		Enhancement e (SEC)	3	0	0	3	40	0	10**	50				
6	MICR2061	Understanding India/Digital & Technological Solutions/Health & Wellness, Yoga Education, Sports & Fitness		non Value Added e (VAC)	3/ 3	1/ 0	0/1	4	80 /6 0	0/2 0	20	100				
	Total	·						20		1		400				

For UG Certificate 40 cr + Additional 4 cr (work based vocational course) = 44 cr. Students are allowed to re-enter within 3 years & complete the programme within the stipulated max. period of 7 years

Note:

Theory: 1 credit is equivalent to 1 class of 1 hr duration per week. Practical: 1 credit is equivalent to 1 class of 2 hrs duration per week.

*, Internal assessment of 10 Marks in case of Multi/ interdisciplinary course will be based on the practical portion of the course concerned.

**, Internal assessment of 10 marks in case of SEC will by based on the practical portion of the course concerned.

Semester-I

Major/DS Course (Core Course)- I	Course C	ode: MICR1011			
Course Title: Introduction to Microbiology and Biomolecules					
(FM- 75; Theory-40, Practical -20, Inte	ernal- 15)	(100-199 level)			
4 Credits (Theory: 03 & Practical: 01) (Lecture-	-03, Tutorial-0	, and Practical-01)			

Theory:	45 Hrs

Unit1: History and Development of Microbiology

Theory of Spontaneous generation, Germ theory of disease. Contributions of Anton von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming, Edward Jenner, Paul Ehrlich, Martinus W. Beijerinck, and Sergei N. Winogradsky in the field of Microbiology. Major scope of Microbiology

Unit2: Microscopy

Principle and application of Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope, Transmission Electron Microscope and Scanning Electron Microscope.

Unit3: Diversity of Microbial world:

Systems of classification: Basic idea about Hackel and Whittaker's kingdom concept anddomain concept of Carl Woese

General characteristics, and economic importance of different group of Microbes: Cellular microorganisms (Archaea, Bacteria, Algae, Fungi and Protozoa); Acellular entity (Viruses, Viroids, Virusoids, Satellite viruses, Prions)

Unit4: Introduction to Biomolecules

Carbohydrates

General properties and classification of carbohydrates, monosaccharides: aldoses and ketoses, trioses, tetroses, pentoses and hexoses (glucose and fructose), epimer, anomer. Disaccharides: reducing and non-reducing sugars. Polysaccharides- starch and glycogen.

Lipids

08 Hrs

07 Hrs

15 Hrs

Fatty acids: types, structures and functions; essential fatty acids. Lipid: definition, nomenclature and classification (triacyl glycerol), phospholipids, glycolipids, sphingolipids, sphingosine and ceramide.

Amino acids & proteins:

Amino acids: classification of amino acids, concept of zwitterion. Function of proteins, basic concept of structures of protein: primary secondary, tertiary and quaternary structures.

Nucleic Acids

Purine, pyrimidine bases, nucleoside, nucleotides- structure, properties. Types of DNA and RNA.

Practical:

- 1. Microbiology Laboratory Management and Bio-safety
- 2. Principle and application of instruments: autoclave, incubator, hot air oven, centrifuge, light microscope, pH meter, Laminar air flow
- 3. Preparation of culture media: Nutrient Broth, Nutrient Agar and Potato dextrose agar
- 4. Sterilization of medium using Autoclave
- 5. Sterilization of glassware using Hot Air Oven
- 6. Sterilization of heat sensitive material by Filtration
- 7. Isolation and enumeration of bacteria from air, water and soil.
- 8. Study of *Rhizopus*, *Aspergillus* and *Agaricus* from permanent slides.
- 9. Study of Anabaena, Volvox, Zygnema and Spirogyra from permanent slides.
- 10. Study of Paramecium, Euglena, Amoeba and Plasmodium from permanent slides.
- 11. Qualitative estimation of Carbohydrate (glucose and starch), Amino acids (Ninhydrin test).

Course Objectives:

To inculcate fundamental concepts of Microbiology and create interest in the subject for the beginners. Educate students about its history and how it has progressed till date. Acquaint them with the overall content (bird eye view) of the subject: various groups and types of microorganisms.

Course Outcome:

Students will acquire basic fundamental concepts (both theory & Practical) of Microbiology. They will have idea on how the subject progressed from beginning, till date. They will also have grasp on different groups of microorganisms and their unique characters that distinguishes/ separates them from the rest.

They will also gain an understanding on laboratory safety rules and regulations; sterilization; how to operate autoclave and other basic equipments of microbiology laboratory, prepare culture media and isolate microorganisms from air, water and soil samples.

Minor Course- I	Course Code- MIC	CR1021				
Course Title: Introduction & Scope of Microbiology						
(FM- 75; Theory-40, Practical -20, I	Internal- 15)	(100-199 level)				
4 Credits (Theory: 03 & Practical: 01)	(Lecture-03, Tutor	ial-0, and Practical-01)				
Theory:		45 Hrs				
Unit 1: History & Development of Microbiolog	<u>S</u> Y	10 Hrs				
History and Development of microbiology. The disease	ory of Spontaneous g	eneration, Germ theory of				
Contributions of Anton von Leeuwenhoek, Loui	is Pasteur, Robert Ko	ch, Joseph Lister,				
Alexander Fleming, Edward Jenner in the field	of Microbiology. Sco	pe of Microbiology				
Unit 2: Diversity of Microorganisms		12 Hrs				
Systems of classification: Basic idea about Hack	kel and Whittaker's					
kingdom concept anddomain concept of Carl We	oese					
General characteristics, and economic importar	nce of different group	oof				
Microbes: Cellular microorganisms (Archaea, B	Bacteria, Algae, Fung	i and				
Protozoa)						

Acellular entity (Viruses, Viroids, Virusoids, Satellite viruses, Prions)

Unit 3: Microscopy08 HrsPrinciple of Bright Field Microscope, Dark Field Microscope, Phase ContrastMicroscope, Transmission Electron Microscope, Scanning Electron MicroscopeUnit4: Introduction to Biomolecules15 Hrs

Carbohydrates

General properties and classification of carbohydrates, monosaccharides: aldoses and ketoses, trioses, tetroses, pentoses and hexoses (glucose and fructose), epimer, anomer. Disaccharides: reducing and non-reducing sugars. Polysaccharides- starch and glycogen.

Lipids

Fatty acids: types, structures and functions; essential fatty acids. Lipid: definition, nomenclature and classification (triacyl glycerol), phospholipids, glycolipids, sphingolipids, sphingosine and ceramide.

Amino acids & proteins

Amino acids: classification of amino acids, concept of zwitterion. Function of proteins, basic concept of structures of protein: primary secondary, tertiary and quaternary structures.

Nucleic Acids

Purine, pyrimidine bases, nucleoside, nucleotides- structure, properties. Types of DNA and RNA.

Practical:

30 Hrs

- 1. Microbiology Laboratory Management and Bio-safety
- 2. Principle and application of instruments: autoclave, incubator, hot air oven, centrifuge, light microscope, pH meter, Laminar air flow
- 3. Preparation of culture media: Nutrient Broth, Nutrient Agar and Potato dextrose agar
- 4. Sterilization of medium using Autoclave
- 5. Sterilization of glassware using Hot Air Oven
- 6. Sterilization of heat sensitive material by Filtration
- 7. Isolation and enumeration of bacteria from air, water and soil
- 8. Study of Rhizopus, Aspergillus and Agaricus from permanent slides
- 9. Study of Anabaena, Volvox, Zygnema and Spirogyra from permanent slides
- 10. Study of Paramecium, Euglena, Amoeba and Plasmodium from permanent slides
- 11. Qualitative estimation of Carbohydrate (glucose and starch), Amino acids (Ninhydrin test)

Course Objectives:

To introduce fundamental concepts of Microbiology, inculcate importance of the subject and create interest for students. Educate students about its history and how it has progressed till date. Acquaint them with various groups and types of microorganisms.

Course Outcome:

Students will acquire basic fundamental concepts of Microbiology. They will know the importance of the

subject and learn some applications of the subject. They will also gain an understanding on laboratory safety rules and regulations; sterilization; working principle and operation of basic equipments of microbiology laboratory, prepare culture media and isolate microorganisms from soil sample.

Multi-Disciplinary/ Interdisciplinary Course Paper- I	Course Code- MICR1031
Course Title: Microbiology for the begin	iners
(FM-50: Theory- 40, Internal-10))
3 Credits (Theory: 03)	(Lecture-03)
Theory:	30 Hrs
Unit 1: History & Development of Microbiology	10 Hrs
History and Development of microbiology. Theory of Spont	aneous generation, Germ theory of
disease Contributions of Anton von Leeuwenhoek, Louis Pa	steur, Robert Koch, Joseph Lister,
Alexander Fleming, Edward Jenner in the field of Microbiol	ogy. Scope of Microbiology
Unit 2: Diversity of Microorganisms	10 Hrs
Basic idea of cellular microorganisms (Archaea, Bacteria, A	lgae, Fungi andProtozoa)
Basic idea of acellular microorganisms (Viruses, Viroids, Pr	rions)
Unit 3: Microscopy	06 Hrs
Principle, components and applications of Bright Field Micr	roscope and Phase Contrast
Microscope.	
Unit 4: Sterilization	04 Hrs
Moist Heat, Dry Heat and Filtration	
*, Internal assessment of 10 Marks in case of Multi/ interdisciplinar practical portion of the course concerned.	ry course will be based on the
*Practicals:	15 Hrs
1. Microbiology Laboratory Management and Bio-safety	
2. Principle and applications of important instruments (Lam	inar air flow,
Autoclave, Incubator, Hot air oven, Light microscope) u	sed in the
• • • • • • • •	

microbiology laboratory

3. Preparation of culture media (Nutrient Broth an Nutrient Agar) for bacterial cultivation

- 4. Sterilization of medium using Autoclave and assessment for sterility
- 5. Isolation and enumeration of bacteria from soil.
- 6. Study of *Rhizopus*, *Aspergillus* and *Agaricus* from permanent slides.
- 7. Study of Anabaena, Volvox, Zygnema and Spirogyra from permanent slides.
- 8. Study of Paramecium, Euglene, Amoeba and Plasmodium from permanent slides.

Course Objectives:

Educate students about its history and how it has progressed till date. Acquaint them with major groups and types of microorganisms. Inculcate basics of microscopy and sterilization to the beginners.

Course Outcome:

Students will acquire basic idea on how the subject progressed from beginning, till date. They will also have grasp on different groups of microorganisms and their unique characters that distinguishes/ separates them from the rest. They will also gain an understanding on working principles of different types of microscopes as well as basic understanding on different types of sterilization: their selection, process and principle.

Skill Enhancement Course-I,	Course Code- MICR1051
Course Title: Microbiological a	analysis in health care
(FM-50, Theory-	- 40, Internal- 10)
Credit-3 (Theory: 03)	(Lecture-03)
Theory	30 Hrs
Unit 1: Collection of Clinical Samples	06 Hrs
Collection of samples (Oral cavity, throat, skin,	Blood, CSF, Urine and faeces) and
precautions required. Method of transport of clin	nical samples to laboratory and storage.
Unit 2: Direct Microscopic Examination and	Culture 06 Hrs
Examination of sample by staining - Gram sta	in, Acid fast staining for tuberculosis,
Geimsa - stained thin blood film for malaria.	Preparation and use of culture media-
Blood agar, Chocolate agar, and MacConkey a	gar. Colony characteristics of bacterial
pathogens.	

Unit 3: Serological and Molecular Methods

Serological Methods- Agglutination and precipitation. ELISA. Nucleic acid based methods- PCR.

Unit 4: Testing for Antibiotic Sensitivity of Bacteria

Antibiotic resistance/ sensitivity of bacteria (disc diffusion & agar cup methods) and its importance; Minimal inhibitory concentration (MIC) of antibiotic by serial dilution method

Unit 5: Microbiological Analysis of Water

Sample Collection; Methods to determine potability of water samples:

Standard qualitative procedure: presumptive/ MPN tests, confirmed and completed tests for faecal coliforms. Membrane filter technique

**, Internal assessment of 10 marks in case of SEC will be based on the practical portion of the course concerned. 15 Hrs

****Practicals:**

- 1. Gram staining
- 2. Preparation of culture media: blood agar, Chocolate agar, MacConkey Agar and their use in differentiation microorganisms.
- 3. Antibiotic sensitivity assay (agar cup diffusion method, disc diffusion method).
- 4. Determination of MIC of streptomycin for *E. coli*.
- 5. MPN test: Presumptive, Confirmed and Completed tests. Membranes filter technique.

Course Objectives:

To inculcate fundamental concepts of Microbiological methods involved in human health care. This includes collection of clinical samples and their microscopic examination through staining followed by cultivation of microorganisms and study of their diagnostic characteristics, finally serological and molecular methods towards their detection & identification.

Course Outcome:

Students will acquire basic fundamental theoretical concepts regarding microbiological analytical methods, tools and techniques for detection of pathogenic microorganisms from clinical samples using

08 Hrs

microscopic staining based techniques, based on culture dependent biochemical reactions and finally serological and molecular methods. The course also aims to teach students how to control microorganisms using antibiotics. Students will also learn basic standard techniques for microbiological examination of water and infer its quality.

Reference Books

- Tortora GJ, Funke BR and Case CL. (2008). Microbiology: An Introduction. 9th edition. Pearson Education
- Madigan MT, Martinko JM, Dunlap PV and Clark DP. (2014). Brock Biology of Microorganisms. 14th edition. Pearson International Edition.
- Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson Education Limited
- Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9th Edition. McGraw Hill International.
- 5. Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM. T. Brown Publishers.
- Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book Company.
- Ananthanarayan R and Paniker CKJ (2009). Textbook of Microbiology, 8th edition, Universities Press Private Ltd.
- Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013). Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication.
- Randhawa, VS, Mehta G and Sharma KB (2009) Practicals and Viva in Medical Microbiology 2nd edition, Elsevier India Pvt Ltd.
- Tille P (2013) Bailey's and Scott's Diagnostic Microbiology, 13thedition, Mosby Collee JG, Fraser, AG, Marmion, BP, Simmons A (2007). Mackie and Mccartney. Practical Medical Microbiology, 14thedition, Elsevier.
- Da Silva N, Taniwaki MH, Junqueira VC, Silveira N, Nascimento MS, Gomes RAR (2012) Microbiological Examination Methods of Food and Water: A Laboratory Manual, CRC Press.
- 12. Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology.2nd

edition, Academic Press.

 Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of Environmental Microbiology, 3rd edition, ASM press.

Semester-II

Major/DSC (Core Course)- II,	Course Code- MICR201	l
Course Ti	tle: Bacteriology	
(FM- 75; Theory-40, Practical -	20, Internal- 15) (10	0-199 level)
4 Credits (Theory: 03, Practical: 01)	(Lecture-3, Tutorial-0, and Prac	tical-01)
Theory:		45 Hrs
Unit 1: Cell Organization		10 Hrs
Cell size, shape and arrangement; glycocal	lyx; capsule, flagella, endo-flagella,	
fimbriae and pili. Cell wall: Composition a	and detailed structure of Gram-positive	2
and Gram-negative bacteria cell wall. Arcl	naeal cell wall, Gram staining and acid	
fast staining mechanisms.		
Spheroplast, protoplast, and L-form. Effect	t of penicillin and lysozyme on the cel	1
wall.		
Cell Membrane: Structure, function and ch	nemical composition of bacterial and	
archaeal cell membrane.		
Cytoplasm: Ribosome, inclusion bodies, n	ucleoid, chromosome and plasmids.	
Endospore: Structure, formation, germinat	ion.	
Unit 2: Culture Techniques		04 Hrs
Pure culture isolation: Streaking, serial di	lution and plating methods; cultivation	1,
maintenance and preservation of pure cul	lture, cultivation of anaerobic bacteria	ı,
and accessing non- culturable bacteria		
Unit 3: Nutrition		05 Hrs
Nutritional requirements in bacteria and	nutritional categories; Culture media	1:
components of media, natural and sy	nthetic media, selective, differentia	l,
enriched media.		
Unit 4: Control of Microorganisms		06 Hrs
Physical methods: Mode of action and app	lication (heat, low temperature,	
filtration, desiccation, osmotic pressure, ra	diation); Chemical methods: Mode of	

action and application (formaldehyde, alcohol, ethylene oxide).	
Unit 5: Growth & Reproduction in Bacteria	05 Hrs
Methods of reproduction, logarithmic representation of bacterial populations,	
phases of growth, determination of generation time and specific growth rate	
Unit 6: Bacterial systematics	07 Hrs
Systems of classification: Basic idea about Haeckel and Whittaker's	
kingdom concept and domain concept of Carl Woese, basic idea of Bergey's	
manual, taxonomy, concept of species, taxa, strain; Characters used in	
bacterial systematic.	
Unit 7: Important Archaeal & Bacterial Groups	08 Hrs
Archaea: Different physiological groups, suitable example and economic	
importance. Bacteria: General characteristics & economic importance with	
suitable example of the following groups:	
Gram Negative: Proteobacteria and Cyanobacteria	
Gram Positive: Low G+C (Firmicutes), High G+C (Actinobacteria).	
Practical:	30 Hrs
1. Preparation of different media: synthetic media, Complex	
media, Differential and Selective media.	
2. Simple staining	
3. Negative staining	
4. Gram staining.	
5. Endospore staining.	
6. Isolation of pure cultures of bacteria by streaking method	
7. Preservation of bacterial cultures (slant /stab)	
8. Determination of CFU by spread plate method/pour plate method	

Course Objectives:

To inculcate fundamental concepts of Bacteriology and create interest in the subject for the beginners. Educate students about its cell ultrastructure, cultivation methods, nutritional types, growth & reproduction, control and finally systematics as well as general characteristics and function of important groups of organisms under bacteria & Archaea.

Course Outcome:

Students will acquire basic fundamental concepts (both theory & Practical) of Bacteriology. They will also have grasp on the detail cell ultrastructure, cultivation methods, nutritional types, growth & reproduction, control and finally systematics as well as general characteristics and importance of groups of bacteria & Archaea. They will also learn how to isolate, cultivate (in pure form) and preserve bacteria in laboratory; determine viable count of bacteria and study staining properties (Simple, Negative, Gram's) as well as endospore staining.

Minor Paper-II,	C	Course Code- MICR2021
Course 7	Title: Basic Bacteriolo	ogy
(FM- 75; Theory-40, Practical	-20, Internal- 15)	(100-199 level4 Credits
(Theory: 03, and Practical: 01)	(Lecture-03, Tu	torial-0, and Practical-01)
Theory:		45 Hrs
Unit 1: Cell organization		10 Hrs
Cell size, shape and arrangements, o	capsule, flagella and	pili, Composition and
detailed		
structure of Gram positive and Gran	n negative cell wall	and archaeal cell
wall, Structure, chemical compositi	on and functions	of bacterial and
archaeal cell membrane, Ribosome	e, cell inclusions, n	ucleoid, plasmid,
structure, formation and stages of sporu	llation	
Unit 2: Bacteriological culture techni	ques	04 Hrs
Isolation of pure culture: Streaking, ser	ial dilution and plating	methods; cultivation,
maintenance and		
preservation of pure cultures; cultivatio	n of anaerobic bacteria	a, and accessing non-
culturable bacteria.		
Unit 3: Nutrition		05 Hrs
Nutritional requirements in bacteria and	d nutritional categories	s; Culture media: components
of media, natural and synthetic media	a, selective, differentia	al, enriched media, acid-base
indicator.		

Unit 4: Growth & Reproduction in Bacteria

Asexual methods of reproduction, logarithmic representation of bacterial	
populations, phases of growth, calculation of generation time and specific	
growth rate	
Unit 5: Chemical Control of Microorganisms	05 Hrs
Chemical methods of microbial control: Types and mode of action.	
Unit 6: Bacterial Systematics	07 Hrs
Aim and principles of classification, taxonomy, concept of species, taxa,	
strain; Characters used in bacterial systematics	
Unit 7: Important Archaeal & Bacterial Groups	08 Hrs
Archaea: Different physiological groups, suitable example and economic	
importance. Bacteria: General characteristics & economic importance with	
suitable example of the following groups:	
Gram Negative: Proteobacteria and Cyanobacteria	
Gram Positive: Low G+C (Firmicutes), High G+C (Actinobacteria).	

Practical:

1. Preparation of different media: synthetic media, Complex media, Differential and Selective media.

- 2. Simple staining
- 3. Negative staining
- 4. Gram staining.
- 5. Endospore staining.
- 6. Isolation of pure cultures of bacteria by streaking method
- 7. Preservation of bacterial cultures (slant /stab)
- 8. Determination of CFU by spread plate method/pour plate method

Course Objectives:

To inculcate fundamental concepts of Bacteriology and create interest in the subject for the beginners. Educate students about its cell ultrastructure, cultivation methods, nutritional types, growth & reproduction, control and finally systematics as well as general characteristics and function of important groups of organisms under bacteria & Archaea.

Course Outcome:

Students will acquire basic fundamental concepts (both theory & Practical) of Bacteriology. They will also have grasp on the detail cell ultrastructure, cultivation methods, nutritional types, growth & reproduction, control and finally systematics as well as general characteristics and importance of groups of bacteria & Archaea. They will also learn how to isolate, cultivate (in pure form) and preserve bacteria in laboratory; determine viable count of bacteria and study staining properties (Simple & Gram's).

Multi-Disciplinary/ Interdisciplinary Paper- II	Course Code- MICR2031
Course Title: Microbes and Envir	onment
(FM-50, Theory- 40, Inter	nal -10)
3 Credits (Theory: 03)	(Lecture-03)
Theory:	30 Hrs
Unit 1: Microorganisms and their habitats	06 Hrs
Soil microflora, aeromicroflora, aquatic microflora; Microbes i Dispersal of microbes	in human body (an overview);
Unit 2: Microbial Interactions	10 Hrs
Microbe-Microbe interactions: Mutualism, synergism, commen amensalism, parasitism, predation (Definition and examples).	nsalism, competition,
Microbe-Plant interaction: Symbiotic and non-symbiotic intera examples).	ctions (Definition and
Microbe-animal interaction: nematophagus fungi and symbioti bacteria (Definition and examples)	c luminescent
Unit 3: Role of microbes in Bio-geochemical Cycles	08 Hrs
Carbon cycle, Nitrogen cycle, Phosphorus cycle, Sulphur cycle	
Unit 4: Water Potability	06 Hrs
Treatment and safety of drinking (potable) water, methods to a samples: Standard qualitative procedure: presumptive test/MPN completed tests for fecalcoliforms; Membrane filtration	1 •

*, Internal assessment of 10 Marks in case of Multi/ interdisciplinary course will be based on the practical portion of the course concerned.

*Practicals:

15 Hrs

- 1. Isolation of bacteria from Air
- 2. Assessment of microbiological quality of water by filter disc method
- 3. Isolation of starch degrading bacteria from soil
- 4. Isolation of Rhizobium from root nodules
- 5. Enumeration of bacteria in soil by dilution plate method

Course Objectives:

To inculcate fundamental concepts on environmental microbiology. This includes soil, water, air and human body inhabiting microbes. Interactions among microbes as well as with plants and animals; role of microbes in biogeochemical cycles and finally quality control of water. They will be taught how to isolate bacteria from air and from soil; assess microbiological quality of water; isolation of starch degrading bacteria and *Rhizobium* from root nodules.

Course Outcome:

Students will acquire basic fundamental concepts on environmental microbiology. This includes soil, water, air and human body inhabiting microbes. Interactions among microbes as well as with plants and animals; role of microbes in biogeochemical cycles and finally quality control of water. They will learn how to isolate bacteria from air and from soil; assess microbiological quality of water; isolation of starch degrading bacteria and *Rhizobium* from root nodules.

Skill Enhancement Course- 2,	Course Code- MICR2051
Course Title: Biofertilizers	and Biopesticides
(FM-50, Theory- 40, Intern	al- 10)
Credit-3 (Theory: 3 credit)	(Lecture-03)
Theory:	30 Hrs
Unit 1: Biofertilizers	14 Hrs
General account of the microbes used as bio-fer	rtilizers for various crop plants
and their advantages over chemical fertilizers.	

proo Azo cult Uni Free proo	abiotic N ₂ fixers: <i>Rhizobium</i> - Isolation, characteristics, types, inoculum duction and field application on legume/pulses plants <i>lla</i> - Isolation, characterization, mass multiplication, Role in rice ivation, Crop response, field application. it2: Non-Symbiotic Nitrogen Fixers e living <i>Azospirillum</i> , <i>Azotobacter</i> - Isolation, characterization, mass duction and field application	04 Hrs
Pho	t3: Phosphate Solubilizers sphate solubilizing microbes-Isolation, characterization, mass production and d application	03 Hrs
Uni	it4: Mycorrhizal Bio-fertilizers	04 Hrs
-	oortance of mycorrhizal inoculum, types of mycorrhizae and associated plants, ss production of VAM and Ectomycorrhizae; and Field applications	
Uni	it5: Bio-Pesticides	05 Hrs
synt	neral account of microbes used as bio-pesticides, their advantages over thetic pesticides, <i>Bacillus thuringiensis</i> - production, Field applications, Viruses ivation and applications	
**, Internal as course concern	sessment of 10 marks in case of SEC will be based on the practical portion of ned.	the
**P	Practicals: 15 Hrs	
	1. Isolation of <i>Rhizobium</i> from root nodules of leguminous plants and identification be phenotypic characteristics.	у
	2. Isolation of free living nitrogen fixing bacteria especially <i>Azotobacter</i> and <i>Azospiri</i> , study of their diagnostic characters.	llum
	3. Isolation of phosphate solubilizing bacteria and determination of phosphate solubilizing potential.	izing

- 4. Study of Mycorrhizal fungi from plant samples.
- 5. Isolation of *Bacillus thuringiensis*.
- 6. Cultivation of virus.

Course Objectives:

To inculcate fundamental concepts on microorganism based bio-fertilizers and bio-pesticides. This includes knowledge on symbiotic and non-symbiotic Nitrogen fixing, phosphate solubilizing microorganisms and mycorrhizal based bio-fertilizers, their utility and field applications.

Course outcome:

Students will acquire basic fundamental concepts on microorganism based bio-fertilizers and bio-pesticides. This includes knowledge on symbiotic and non-symbiotic Nitrogen fixing, phosphate solubilizing microorganisms and mycorrhizal based bio-fertilizers, their utility and field applications.

Reference Books:

- 1. Atlas RM. Principles of Microbiology. 2nd edition. WM.T. Brown Publishers.
- 2. Black JG. (2008). Microbiology: Principles and Explorations. 7th edition. Prentice Hall
- 3. Madigan MT, and Martinko JM. (2014). Brock Biology of Microorganisms. 14th edition. Parker J. Prentice Hall International, Inc.
- 4. Pelczar Jr MJ, Chan ECS, and Krieg NR. (2004). Microbiology. 5th edition Tata McGraw Hill.
- Da Silva N, Taniwaki MH, Junqueira VC, Silveira N, Nascimento MS, Gomes RAR (2012) Microbiological Examination Methods of Food and WaterA Laboratory Manual, CRCPress.
- Atlas RM and Bartha R. (2000). Microbial Ecology: Fundamentals & Applications. 4thedition. Benjamin/Cummings Science Publishing,USA
- Maier RM, Pepper IL and GerbaCP. (2009). Environmental Microbiology.2nd edition, Academic Press.
- Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of Environmental Microbiology, 3rd edition, ASMpress.
- 9. Kannaiyan, S. (2003). Bioetchnology of Biofertilizers, CHIPS, Texas.

- 10. Mahendra K. Rai (2005). Hand book of Microbial biofertilizers, The Haworth Press, Inc. NewYork.
- 11. Reddy, S.M. et. al.(2002). Bioinoculants for sustainable agriculture and forestry, Scientific Publishers.
- 12. Subba Rao N.S (1995) Soil microorganisms and plant growth Oxford and IBH publishing co. Pvt. Ltd.NewDelhi.
- Saleem F and Shakoori AR (2012) Development of Bioinsecticide, LapLambert Academic Publishing GmbHKG
- 14. Aggarwal SK (2005) Advanced Environmental Biotechnology, APH publication.
- 15. Hui YH, Meunier-Goddik L, Josephsen J, N ip WK, Stanfield PS (2004) Handbook of food and

fermentation technology, CRCPress

- 16. Holzapfel W (2014) Advances in Fermented Foods and Beverages, Woodhead Publishing.
- 17. Yadav JS, Grover, S and Batish VK (1993) A comprehensive dairy microbiology, Metropolitan
- Jay JM, Loessner MJ, Golden DA (2005) Modern Food Microbiology, 7th edition. Springer
- 19. Srivastava S and Srivastava PS. (2003). Understanding Bacteria. Kluwer Academic Publishers, Dordrecht
- Stanier RY, Ingraham JL, Wheelis ML and Painter PR. (2005). General Microbiology.
 5th edition

McMillan.

 Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition Pearson

Education.

22. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw

Hill Higher Education.

23. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson

Education Limited.