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Final report 
 
Ann-1 
Objective:  
 
Main objective of the present project is to  

i) Design of chaotic electronic oscillators 
ii) Study synchronization of chaos in those electronic circuits. 
iii)  Explore the potential of the study in chaotic communication system. 

 
New chaotic electronic oscillators (SAB based chaotic oscillator) has been designed. 
Present work has given emphasize on the synchronization problem of chaotic SAB 
circuits. Further the present work search for application potentiality of the chaotic 
synchronization of electronic circuits in electronic communication. In the context of 
recent interest in secure communication system using chaotic signals, this work will be 
useful in both the academic and technical purpose.  
 
 

Ann-2 

Works completed: 

1. Studies on chaotic Jerk circuit:  

I have thoroughly investigated the behavior of a Jerk circuit with absolute 

nonlinearity. Through Numerical studies we have derived Figenbum constant, 

bifurcation diagram, phase plane plots. Also we have designed experimental chaotic 

Jerk circuit. It has been found experimentally that the circuit shows complex behavior 

like chaos and bifurcation. Experimental Power spectrum has been measured and it 

shows a broad nature, which is the characteriostic of a chaotic signal. Also Figenbum 

constant has been computed experimentally. 

2. Design of two new chaotic circuits: 

Two simple autonomous chaotic electronic circuits have been proposed in this paper. 

The core of each of the circuits consists of a Single Amplifier Biquad (SAB). We 
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have proposed two configurations of converting this SAB into chaotic oscillators 

using suitable passive nonlinear element and a storage element in the form of an 

inductor. The mathematical models of the proposed chaotic circuits have been 

constructed, which are fourth order autonomous nonlinear differential equations. The 

behavior of the proposed circuits has been investigated through numerical 

simulations, Spice based circuit simulations and electronic hardware experiments and 

they agree well with each other. It has been found that both the circuits show complex 

behaviors like bifurcations and chaos for a certain range of circuit parameters. 

3. Hardware design of Lorenz circuit: 

I have used electronic workbench software to simulate the Lorenz circuit in its 

hardware level. It has been found that with varying parameter (e.g. an resistor) a 

Lorenz circuit shows chaos. The occurrence of butterfly attractor has been observed. 

Finally, in our laboratory I have designed a Lorenz circuit using op amps, multiplier 

chips. The circuit shows complex behavior like bifurcation and chaos.  

 

4. Synchronization of chaos in Jerk circuit: To harness the richness of chaos is 

one of the most widely recognized research topics in academic and industrial 

world. Synchronization of chaos has opened a new era of chaotic electronic 

communication systems. Chaos based communication system is believed to be 

secure and interference free. In the present work, the feedback synchronization of 

two chaotic jerk oscillators and its application in chaotic electronic 

communication system have been investigated. For that, we have designed 

electronic jerk oscillators with absolute type nonlinearity and coupled them using 

one way coupling. It has been found that, for suitable coupling strengths, two 

oscillators can be made synchronized. Further, by exploiting this synchronization 

process, we have proposed a chaos based electronic communication scheme. The 

practical implementation of this communication scheme has been verified 

experimentally.  

5. Chaotic communication system 
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One of the applications of chaos synchronization is chaos based communication. 

We have investigated the possibility of chaotic communication using chaotic 

synchronization of two Jerk circuits. The scheme is as follows: at first add the 

sinusoidal modulating signal with the chaotic y-variable of Drive circuit. Two 

Jerk circuits are made synchronized by using feedback synchronization as 

discussed earlier. Now (y+modulating) signal is subtracted by v-variable of the 

Response Jerk circuit. If two Jerk circuits are in a synchronized state then the 

subtracted output is simply the modulating signal. From the security point of view, 

if an unauthorized user does not know the x-variable then he can not reconstruct 

the modulating signal. Also since the modulating signal is masked by the chaotic 

signal it is not possible by any user to get an idea of the modulating signal.  

Results: 

Following are some experimentally obtained results in the experiments stated above: 

1. Jerk circuit 

 
Figure 1 Period 2 , Phase space diagram and Real time behavior. 
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Figure 2. Chaotic behavior, Phase space and Real time, R=2.09 

 
 

Figure 3. Power spectrum of the Chaotic X (R=2.09). 
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2. New chaotic circuit: 

 

i) SAB-I 

 
Fig4. Proposed circuit. 

System equation: 

 

 
Fig5. Numerical result for the chaotic attractor. 
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Figure 6. Chaotic behavior observed from experimental circuit. 

 

SAB-II 

 
Fig7. Periodic and Chaotic signals from SAB-II circuit. 
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3. Lorenz circuit: 

 
Fig. 8 . Chaotic behavior X (upper trace) and Z (lower trace). R4=22 kohm. 

 
Fig. 9. Chaotic behavior shown in phase plane: X (horizontal) and Z (vertical). 
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4. Synchronization of chaos in Jerk circuit: 

 
Fig. 10. Phase plot of xvs.u for R1=4Kohm. 

 
Fig. 11. Phase plot of xvs. u for R1=800 ohm. 
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Fig.12. Real time plot of x  and u for R1=800 ohm. Upper trace is for Response and 

lower trace is for Drive. 

5. Chaotic communication system 

The scheme is as follows: at first add the sinusoidal modulating signal with the chaotic y-

variable of Drive circuit. Two Jerk circuits are made synchronized by using feedback 

synchronization as discussed earlier. Now (y+modulating) signal is subtracted by v-

variable of the Response Jerk circuit. If two Jerk circuits are in a synchronized state then 

the subtracted output is simply the modulating signal. From the security point of view, if 

an unauthorized user does not know the x-variable then he can not reconstruct the 

modulating signal. Also since the modulating signal is masked by the chaotic signal it is 

not possible by any user to get an idea of the modulating signal.  

Figure 13 shows the (y+sin(w.t)) wave form. Clearly one can not identify the sinusoidal 

signal masked in the chaotic signal. 

Figure 14 shows the original sinusoidal signal (upper trace) and reconstructed modulating 

signal (lower trace). 
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Figure.13. chaotic y variable plus sin(2.pi.f.t) (f=1kHz). 

 
Figure. 14. Upper trace: sinusoidal modulating signal. Lower trace: reconstructed signal. 
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Abstract Two simple autonomous chaotic electronic
circuits have been proposed in this paper. The core of
each of the circuits consists of a single amplifier bi-
quad (SAB). We have proposed two configurations of
converting this SAB into chaotic oscillators using suit-
able passive nonlinear element and a storage element
in the form of an inductor. The mathematical models
of the proposed chaotic circuits have been constructed,
which are fourth order autonomous nonlinear differ-
ential equations. The behavior of the proposed circuits
has been investigated through numerical simulations,
Spice-based circuit simulations and electronic hard-
ware experiments and they agree well with each other.
It has been found that both the circuits show com-
plex behaviors like bifurcations and chaos for a certain
range of circuit parameters.

Keywords Single amplifier biquad · Chaotic
electronic circuits · Chaos · Bifurcations

1 Introduction

Studies on nonlinear dynamical problems of different
physical systems have been attracting the attention of
researchers for at least three decades [1]. An electronic

T. Banerjee (�) · B. Karmakar · B.C. Sarkar
Department of Physics, Burdwan University, Burdwan
713104, West Bengal, India
e-mail: tanbanrs@yahoo.co.in

Chua circuit first showed that chaos is not a mathemat-
ical abstraction but can be observed in a laboratory [2].
Since then, research in chaotic electronic circuits and
systems has been boosted up owing to its application
potentiality in secure electronic communication sys-
tems [3].

Chaotic Colpitts oscillator proposed by Kennedy
[4] showed that a sinusoidal oscillator can be brought
into chaotic regime. Namajunas and Tamaševičius [5]
modified a Wien-bridge circuit for chaos generation.
Later Elwakil and Kennedy reported [6] a semisys-
tematic procedure of modifying a sinusoidal oscillator
into a chaotic oscillator by introducing a storage el-
ement (inductor or capacitor) and a suitable passive
nonlinearity (in the form of a diode or field effect
transistor). Many chaotic oscillators based on these
modifications have been reported (e.g., Wien-bridge
oscillator [6, and references therein], Twin-T oscilla-
tor [7], current feedback op amp based oscillators [8],
etc.). Also, efforts are there to find out high frequency
chaotic oscillations from sinusoidal oscillators [9]. At
the same time, investigation on chaotic attractors from
electronic circuits incorporating different kind of non-
linearity has been reported [10].

In this paper, we have proposed two new au-
tonomous chaotic electronic oscillators. We have de-
signed a single amplifier sinusoidal oscillator (SASO)
based on a single amplifier biquad (SAB) proposed
by Deliyannis and Friend [11–13] and modified it for
generating chaotic oscillations using a diode as a pas-
sive nonlinear element (unlike chaotic Chua oscilla-

mailto:tanbanrs@yahoo.co.in
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tor, where a locally active nonlinear element is nec-
essary) and a storage element in the form of an in-
ductor. The proposed chaotic circuits have been math-
ematically modeled, which are a set of four first or-
der coupled nonlinear differential equations involving
voltages and currents with piecewise linear nonlinear-
ity. The behavior of the proposed circuits have been
investigated through numerical simulations using the
fourth order Runge–Kutta method, Spice-based circuit
simulator, and electronic hardware experiments and
they agree well with each other. Through the phase
plane plots, bifurcation diagrams and experimentally
obtained power spectra it has been ensured that the
circuits show complex behaviors like bifurcations and
chaos for certain range of parameter values.

2 SAB based sinusoidal oscillator

SAB based high-Q active band pass filter (BPF) [11,
12] has been shown in Fig. 1. It consists of an op amp,
two capacitors having same value C and four resistors.
It is a second order system and its transfer function is
given by

H(s) = −(k + 1)/(R1C)s

s2 + (2/R2C − k/R1C)s + 1/R1R2C2
, (1)

where k = Rb/Ra . This SAB can be converted into a
single amplifier sinusoidal oscillator (SASO) by con-

Fig. 1 Circuit diagram of a SAB. It consists of an op amp, re-
sistors R1, R2, Ra , Rb and two capacitors having capacitance C.
This can be converted into a SASO by connecting Vin terminal
to the ground

necting the terminal Vin (as shown in Fig. 1) to the
ground [13]. Proper choice of Rb (and hence k) makes
the coefficient of s in the denominator negative, which
in turn brings the pole of the circuit to the right half
of the s-plane. The SASO can be described by the fol-
lowing two sets of coupled first order autonomous dif-
ferential equations in voltages V0 and V1 in terms of
circuit parameters,

{
C

dV0
dt

= − 2
R2

V0 + (k+1)
R1

V1,

C dV1
dt

= − (2k+1)
(k+1)R2

V0 + k
R1

V1.
(2)

Equation (2) can be written as

( dV0
dt

dV1
dt

)
=

( −2/CR2 (k + 1)/CR1

−(2k + 1)/(k + 1)CR2 k/CR1

)

×
(

V0

V1

)

=
(

α11 α12

α21 α22

)(
V0

V1

)
. (3)

Now for any sinusoidal oscillator given in (3) one
can find the condition of oscillation by making α11 +
α22 = 0, which gives the condition of oscillation of the
SASO as

k = 2R1

R2
. (4)

Further the frequency of oscillation can be derived as,
ω0 = √

(α11α22 − α12α21), which gives the frequency
of oscillation of the SASO as

ω0 = 1

C
√

R1R2
. (5)

3 Modification of SASO for chaos generation

In this section, we describe two modifications of the
SASO for generating chaos.

3.1 First modification

Figure 2 shows the circuit diagram of the proposed
modified chaotic SASO (MSASO-1). A parallel
Diode–Inductor (DL) arrangement [6] has been in-
troduced between the V1 terminal (through a resis-
tance R1) and ground. The diode switches on and
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Fig. 2 Circuit diagram of first modification (MSASO-1). A par-
allel Diode (D)–Inductor (L) arrangement has bean introduced
between V1 (through resistor R1) and ground

off according the voltage developed across the induc-
tor [6]. This inductor voltage appears across diode
parasitic transit capacitance CD and let that voltage
be VCD. The circuit behavior can be modeled by a
set of four first order coupled autonomous differential
equations in voltages (V0, V1 and VCD) and inductor
current IL⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
dV0
dt

= − 2
R2

V0 + (k+1)
R1

V1 − (k+1)
R1

VCD,

C dV1
dt

= − (2k+1)
(k+1)R2

V0 + k
R1

V1 − k
R1

VCD,

dIL

dt
= VCD

L
,

CD
dVCD

dt
= 1

R1
V1 − IL − 1

R1
VCD − ID.

(6)

The nonlinear diode current ID has been modeled as a
piece-wise linear function of voltage such that

ID = 1
RD

(VCD − Vγ ), if VCD ≥ Vγ ,

= 0, if VCD < Vγ .
(7)

RD is the diode forward conductance resistance and
Vγ is the diode forward voltage drop.

The sets of equations given in (6) and (7) can be
written in the following dimensionless form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx
dτ

= −2rx + (k + 1)y − (k + 1)p,

dy
dτ

= −r( 2k+1
k+1 )x + ky − kp,

dz
dτ

= bp,

ε
dp
dτ

= y − z − (1 + a)p + a,

(8a)

where we have defined the following dimensionless
quantities: τ = t/R1C, x = V0/Vγ , y = V1/Vγ , p =
VCD/Vγ , z = R1IL/Vγ , r = R1/R2, b = R2

1C/L, ε =
CD/C, KD = R1/RD . The quantity a is defined as

a = KD, if p ≥ 1,

= 0, if p < 1.
(8b)

Equilibrium point of (8) is given by (x0, y0, z0,p0) =
(0,0, a,0). Therefore, in the region p < 1 (i.e., for a =
0), there is a single equilibrium point. In the region
p ≥ 1, the equilibrium point is virtual, meaning that it
lies outside this region [6].

Although the system is described by a fourth-order
differential equation, it effectively lives in a three-
dimensional subspace owing to the small value of CD

(i.e., small value of ε) [6]. To explore the dynam-
ics of the system, numerical integration has been car-
ried out on the sets of (8) using fourth-order Runge–
Kutta algorithm with step size h = 0.001. Figure 3
shows the phase plane representation (in y–x plane)
of the system for different values of the control para-
meter r keeping the values of other parameters fixed at
k = 0.48, b = 0.01, ε = 0.1, KD = 20. For r > 0.49, it
shows a single trivial equilibrium point at (0,0,0,0);
at r = 0.49 it goes to a limit cycle through Hopf bi-
furcation. Figure 3(a) shows a limit cycle at r = 0.45.
A decrease in the value of r makes the period one be-
havior to a distorted period one oscillation [14]. Fur-
ther decrease of value of r results in a period doubling
route to chaos. The chaotic attractor at r = 0.16 has
been shown in Fig. 4.

Figure 5 shows the bifurcation diagram in x by
plotting the values of x(excluding the transients) from
the Poincare section at y = −0.2, which agrees well
with the phase plane plots. Studies on the detailed dy-
namical behavior of this system are in progress and
will be reported elsewhere.

The circuit has been studied using Spice-based
circuit simulator. Op amp used in this simulation
is TL082 with ±12 volt power supply and general-
purpose diode (1N1183) has been chosen. Figure 6
shows the chaotic behavior in the V1–V0 space for:
R1 = 100 �, R2 = 3.1 k�, Ra = 2 k�, Rb = 500 �,
C = 1 nF, and L = 7.8 mH. It can be seen from Figs. 4
and 6 that numerical results and Spice-based circuit
simulation results agree well with each other. Experi-
mental results will be discussed in Sect. 4.



862 T. Banerjee et al.

Fig. 3 Phase space
representation of the system
dynamics for (a) r = 0.45
(period-1), (b) r = 0.25
(distorted period-1),
(c) r = 0.18 (period-2),
(d) r = 0.175 (period-4).
The values of other
parameters are k = 0.48,
b = 0.01, ε = 0.1, KD = 20

Fig. 4 Chaotic attractor in y–x space at r = 0.16 (k = 0.48,
b = 0.01, ε = 0.1 and KD = 20)

3.2 Second modification

Figure 7 shows the second modification of SASO
(MSASO-2) for generating chaos. In this modifica-
tion, the Diode-Inductor arrangement is introduced
between the noninverting terminal of the op amp
(through a resistance Rb) and the ground. The circuit
behavior can be modeled by a set of four first order
coupled autonomous differential equations in voltages
V0, V1, and VCD and inductor current IL, which are as
follows:

Fig. 5 Bifurcation diagram of MSASO-1 taking r as the control
parameter (k = 0.48, b = 0.01, ε = 0.1 and KD = 20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV0
dt

= (
β
Rb

− 2
R2

)V0 + (k+1)
R1

V1 − ε′IL

+ ( 2
R2

− β
Rb

)VCD − ε′ID,

C dV1
dt

= (
β
Rb

− (2k+1)
(k+1)R2

)V0 + k
R1

V1 − ε′IL

+ (
(2k+1)
R2(k+1)

− β
Rb

)VCD − ε′ID,

dIL

dt
= VCD

L
,

CD
dVCD

dt
= k

Rb(k+1)
V0 − IL − k

Rb(k+1)
VCD − ID,

(9)

where k = Rb/Ra , ε′ = C/CD , β = ε′k/(k + 1). Fur-
ther, the diode current ID has been modeled as the
same piece-wise linear form as given in (7).
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Fig. 6 Spice-based circuit
simulation result: the
chaotic behavior in the
V1–V0 space for:
R1 = 100 �, R2 = 3.10 �,
Ra = 2 k�, Rb = 500 �,
C = 1 nF, and L = 7.8 mH

Fig. 7 Circuit diagram of second modification (MSASO-2).
A parallel Diode (D)–Inductor (L) arrangement has bean intro-
duced between the noninverting terminal (through resistor Rb)
and ground

By introducing the following dimensionless quan-
tities: τ = t/RbC, x = V0/Vγ , y = V1/Vγ , p =
VCD/Vγ , z = RbIL/Vγ , r1 = Rb/R1, r2 = Rb/R2,
b = R2

bC/L, ε = CD/C, KD = Rb/RD , one can write
(9) in the following dimensionless form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dτ

= (β − 2r2)x + r1(k + 1)y − ε′z
+ (2r2 − β − ε′a)p + ε′a,

dy
dτ

= (β − ( 2k+1
k+1 )r2)x + r1ky − ε′z

+ (( 2k+1
k+1 )r2 − β − ε′a)p + ε′a,

dz
dτ

= bp,

ε
dp
dτ

= k
(k+1)

x − z − (a + k
k+1 )p + a.

(10)

The quantity a is defined by (8b).
In this case also, the equilibrium point is (x0, y0,

z0,p0) = (0,0, a,0). Therefore, in the region p < 1
(i.e., for a = 0), there is a single equilibrium point.
In the region p ≥ 1, the equilibrium point is virtual,
meaning that it lies outside this region [6].

As discussed in the earlier section, the system is
effectively living in a three-dimensional subspace ow-
ing to the small value of CD (i.e., small value of ε).
The sets of (10) along with (8b) have been numer-
ically integrated using fourth order Runge–Kutta al-
gorithm with step size h = 0.001. Figure 8 shows the
phase space trajectory for different values of r1 (with
r2 = 0.16, k = 0.02, KD = 10, b = 0.01, ε = 0.1, and
ε′ = 10) which shows a period doubling route to chaos
with increasing r1. Figure 9 shows the bifurcation dia-
gram of the system variable x (plotted using Poincare
map at y = 1), which agrees well with the phase plane
plots.

The circuit of MSASO-2 has also been tested in
Spice-based electronic circuit simulator using TL082
op amp with ±12 volt power supply and 1N1183
diode. Figure 10 shows the chaotic behavior for: Ra =
2 k�, Rb = 440 �, R1 = 200 �, R2 = 700 �, C =
1 nF, and L = 7.8 mH.

4 Experimental results

Electronic hardware experiments have been carried
out using discrete components for both the MSASO-1
and MSASO-2 circuits. Op amps used in the experi-
ments are TL082 with ±12 volt power supply; diodes
are general purpose 1N1183 diodes. Following values
of components are used throughout the experiments:
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Fig. 8 Phase space
trajectory for different r1
(a) r1 = 0.5 (period-1),
(b) r1 = 0.65 (period-2),
(c) r1 = 0.74 (period-4),
(d) r1 = 0.88 (chaos) (with
r2 = 0.16, k = 0.02,
KD = 10, b = 0.01,
ε = 0.1, and ε′ = 10)

Fig. 9 Bifurcation diagram of MSASO-2 taking r1 as the con-
trol parameter (with r2 = 0.16, k = 0.02, KD = 10, b = 0.01,
ε = 0.1, and ε′ = 10)

C = 1 nF (±5%) and L = 7.8 mH (±10%). All the
resistors used in the experiments have ±5% tolerance.

For the MSASO-1 circuit, we have fixed the val-
ues of resistances Ra = 2 k�, Rb = 500 �, and R1 =
100 � (using a 1 k� potentiometer (POT)). R2 has
been varied (using a 5 k� POT) for exploring differ-
ent behavior of the circuit. With the increasing resis-
tance R2, the circuit shows a transition from a dc state
to an oscillatory behavior (a period-1 oscillations) of
frequency 34.56 kHz. An increase in R2 beyond 1 k�

results in a distorted sinusoidal oscillation. A period

doubling route to chaos has been observed for fur-
ther increase in R2. Figure 11 shows the oscilloscope
trace, which is a chaotic attractor in the V1–V0 space
for R2 = 3.10 k�. Figure 12 shows the experimen-
tal power spectrum (measured with Agilent E4411B
spectrum analyzer) of the chaotic signal of Fig. 11 and
it is broad in nature, which is one of the characteristics
of a chaotic oscillation.

For MSASO-2, we take Ra = 2 k�, R1 = 200 �

(POT), and R2 = 700 � (POT). By increasing Rb

through a 2 k� POT a period doubling route to chaos
has been observed (with a period-1 oscillation of
frequency 114.7 kHz). Figure 13 shows the oscillo-
scope trace of the chaotic attractor in the V1–V0 space
for Rb = 440 �. Figure 14 shows the corresponding
experimental power spectrum of the chaotic signal,
which is significantly broad in nature.

5 Conclusion

In this paper, we have introduced two new autonomous
chaotic electronic oscillators. The circuits are simple
as they require only a single amplifier as an active el-
ement and one passive nonlinearity in the form of a
general-purpose diode. These circuits have been math-
ematically described by a set of four first order coupled
nonlinear autonomous differential equations. Numeri-
cal integrations show that the oscillators can be driven
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Fig. 10 Spice-based
electronic circuit simulation
result. It shows that the
circuit shows chaotic
behavior for: Ra = 2 k�,
R1 = 200 � and
R2 = 700 � and
Rb = 440 �, C = 1 nF and
L = 7.8 mH

Fig. 11 The oscilloscope trace of the chaotic attractor in
MSASO-1 in the V1–V0 space at R1 = 400 � (POT),
R2 = 3.3 k� (POT), Ra = 1 k�, Rb = 476 �, C = 1 nF, and
L = 7.8 mH. V1 (x-axis): 0.2 v/div, V0 (y-axis): 0.5 v/div

Fig. 12 Experimental power spectrum of chaotic oscillation
from V1 of MSASO-2 (parameters are same as Fig. 11). (Fre-
quency span: 5 kHz to 1 MHz)

Fig. 13 The oscilloscope trace of the chaotic attractor in
MSASO-2 in the V1–V0 space at Ra = 2 k� (POT), Rb = 440 �

(POT) and R1 = 200 � (POT) and R2 = 700 � (POT),
C = 1 nF, and L = 7.8 mH. V1 (x-axis): 0.2 v/div, V0 (y-axis):
0.5 v/div

Fig. 14 Spectrum of chaotic oscillation from V1 of MSASO-2
(parameters are same as Fig. 13). (Frequency span: 5 kHz to
500 kHz)
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into chaotic region for some suitable circuit parame-
ters. Simulations in the Spice-based circuit simulator
and real world hardware experiments agree well with
the numerical results. However, realization of high fre-
quency chaotic signals [9, 15] from these circuits is
limited by the bandwidth limitations of the op amp
used.
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